

Structural Design of Agricultural Buildings

Martin Heywood

RIDBA Members' Meeting 2019

Overview

- ▶ Design and CE marking
- ► The design process
- ► Reuse of steel structures
- ► NSSS 7th edition

Design and CE marking

- ► Initial type testing (could be calculation)
 - ▶ Declaration of parameters (CE label)
- ► Factory production control
 - ▶ Processes to ensure that stated quality is achieved
- ► Certification followed by on-going surveillance of the FPC

CE marking of steel buildings

- ► EN 1090-1
 - ► Steel components and kits
 - ► Appropriate for structural steelwork and frames
 - ▶ Does not cover the whole building (e,g. cladding)
 - ► Gives options for declaring design performance

Mechanical resistance and stability

- ► Options in EN 1090-1 on how to declare mechanical resistance:
 - ▶ Declare properties so that others can calculate resistance
 - ► Manufacturer declares mechanical resistance
 - ▶ Declare compliance with third party specification (client's design)
 - ▶ Declare compliance with purchaser's order (e.g. use specific standard)

Mechanical resistance and stability

- ► However:
 - ► Agricultural clients do not normally employ their own engineers
 - ► Agricultural clients are not qualified to suggest alternative design methods
- ► Agricultural buildings should be designed to BS 5502-22 with loadings and resistances calculated to the Eurocodes
 - ► Either declare mechanical resistance on CE label (not normal)
 - ▶ Declare that the frame design complies with BS 5502-22
- ► A design process should therefore form part of the FPC

Demonstration of compliance

- ► Manufacturers will need to demonstrate mechanical resistance calculation
- Notified Body will expect sample structural calculations for typical building
- ► Calculations must be to Eurocodes (BS 5502-22)
- ► RIDBA has a Design Protocol to assist its members

The Design process

- ► Loadings are location specific
- ► Loadings depend on building use
- ► Safety margin?
- ▶ Economy
- ▶ Buildings do collapse when not designed and detailed properly

The Design process

- ▶ Identify building location, proposed use and other factors
- ▶ Determine the building loads:
 - ► Permanent (dead)
 - ► Imposed (maintenance access)
 - ▶ Wind
 - ► Snow (including drift)
 - Construction loads (if appropriate)
- ► Apply factors and calculated design load cases

The Design process

- Select frame members to meet strength and deflection requirements
- ► Check frame stability
- ▶ Design and detail connections
- ► Other details such as rafter restraint

The Design Process

▶ Software

- ▶ Many reliable packages available
- ► Portal frame software uses plastic design so very efficient
- ► Most packages include connection design software

▶ Tables

- ► RIDBA tables are for estimating only
- ► Any designs produced using the tables MUST be checked by a qualified engineer

Reuse of steel structures

- The sale of second-hand frames and members is increasing
- This raises questions regarding design and CE marking
- Design issues:
 - Steel should be inspected and tested
 - ► Possible reduction in ductility (plastic design not recommended)
 - ▶ Use different safety factors to allow for material uncertainty
- CE marking
 - ► The need to CE mark depends on what is done to the steel between salvage and re-sale.
 - Declared values will be derived from tested properties

NSSS 7th edition

- ▶ Due early 2020 with one year transition
- ► Mandatory ISO 3834 3 for Execution Class 2
- ► Mandatory ISO 3834 2 for Execution Class 3
- Changes to Welding Quality Management requirements
- ▶ New annex on EXC 3
- ▶ New section on intumescent coatings

RIDBA advisory service

Technical@ridba.org.uk